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Abstract

This report describes my summer rotation project at the Lister Hill National Center for Biomedical
Communications in the National Library of Medicine at the National Institutes of Health. My
project introduced me to key technologies and trends in computer aided drug repositioning[24] and
the emerging role of the semantic web[5]. This proof of concept illustrates the potential utility of
semantic web technologies and datasets from the Linked Open Drug Data (LODD)[15] task force
which is coordinated by the Health Care and Life Sciences (HCLS) Interest Group from the World
Wide Web (W3C) Consortium. The academic entities from this group have provided a readily
integrate-able and interoperable set of drug data which I have reused in an attempt to replicate
the discoveries of Campillos, et. al in 2008. These resources highlight an improvement in scientific
communication; however, they are not without their caveats[4, 15, 23].

Introduction

In the past decade, there have been several paradigm shifts with respect to medicine, drug discovery,
and the technologies that seek to integrate the deluge of heterogeneous data in the health care and
life sciences. Specifically, the growth of biomedical, pharmaceutical, and genomic data has provided
opportunities for accelerating translational medicine, permitting the discovery of novel targets for
existing drugs, thus providing a low attrition, cost-effective drug development path compared to de
novo methods [3].

For example, as a poster child of this drug repositioning trend, Thalidomide has spent almost six
decades in the spot light where it has been marked by both its tragic beginnings in the 1950’s
and its serendipitously rediscovered beneficial applications from the mid 1960’s up to the present
day. Indeed, this drug which was discontinued because of its teratogenic effects, now has arisen to
become a potential cancer therapeutic[29].

As shown in Figure 1 and reviewed by Ashburn and Thor[3], drug repositioning has offered a faster
time-to-market by avoiding the initial phase of drug discovery which includes target discovery, lead
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Figure 1: An overview of de novo and drug repositioning pipelines [Ashburn and Thor 2004].

discovery, and lead optimization. Further mitigating the cost of resources, existing drugs have
already passed ADMET (absorption, distribution, metabolism, excretion, and toxicity) tests and
clinical trials thereby reducing “safety and pharmacokinetic uncertainty.” Some caveats still exist,
however. For example, new clinical tests must be developed and approved for the proposed novel
indication. In the case for viagra, standard metrics had to be developed for normative erection in
order to distinguish from dysfunctional erection.

Indeed, drug repositioning has paved the way for rational drug design. Instead of phenotypic assays
that involve trial-and-error, we are delving deeper into the biological processes (and components)
that underlie disease. Moreover, one aspect of drug repositioning hinges on the understanding of
the so-called polypharmacology of drugs[17]; that is, as suggested by the myriad of drug side effects,
there exist unintended and hidden targets for existing drugs[6].

Along with in vivo and in vitro (including serendipitous) methods, several in silico tools, databases
and frameworks have been employed by pharmaceutical companies and academic researchers alike
to discover novel applications of existing drugs. These methods include the structure- and ligand-
based virtual screening[28, 12], target binding-site similarity[20], network pharmacology[2, 16, 13],
and pharmacogenomics[21, 14].

For our present study, our proof of concept hinged on the similarity of side effects among drugs
as described by Campillos, et. al. For example, in some instances, the molecular targets of mar-
keted drugs are known and annotated. However, not all FDA-approved drugs have known and
experimentally validated targets.

Thus, our goal was to infer targets of drugs which have not been annotated. In order to achieve
this, we focused on existing FDA-approved drugs which are annotated in DrugBank[18] as well
as the database of side effects which are annotated in SIDER[19]. Further, we postulate that
the ‘unknown’ target of one drug can be inferred from the ‘known’ target of another drug by the
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similarity between their side effects. Moreover, we can also infer additional targets for drugs with
already known targets.

Because our strategy relied on the integration of the drug information from DrugBank and side
effect information SIDER, we utilized several semantic web technologies and off-the-shelf resources
to mitigate the initial barrier to the integration process when dealing with traditional web services
and relational databases.

Materials and Methods

Data sources

Figure 2: A map of the data sets curated by the LODD task force.

We have deployed several instances of the open-source version of Virtuoso [27] and have populated
them with the LODD[15] datasets including Uniprot[9], Diseasome[11], SIDER[19], ClinicalTrials[8],
DailyMed[10], and DrugBank[18]. The Virtuoso software suite provided both the triple store for the
aforementioned linked and RDF[26] data along with the SPARQL[25] endpoints to these resources.
Aside from the aforementioned RDFized datasets, we also loaded and evaluated over 40 other
RDFized datasets from the life science domain: Bio2RDF[1] and Chem2Bio2RDF[7].

For our proof of concept, we have selected the DrugBank and SIDER datasets. DrugBank contains
information on the known drug targets for marketed drugs, while SIDER contains side effect infor-
mation for those marketed drugs. A caveat, which will be discussed in the Discussion section, is the
currency of the datasets. At the time of use, the LODD curated SIDER data contained only 275
drugs with annotated side effects, whereas the most recent version of SIDER contains 888 marketed
drugs with annotated side effects.
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Figure 3: A graph layout of the SPARQL query.
Figure 4: The subset of the LODD datasets that
we eventually used: SIDER and DrugBank

Integration

To integrate the SIDER and DrugBank datasets, we utilized the SPARQL graph query language
to interrogate the Virtuoso instances, which served as the storage and access points (SPARQL
endpoint) for the SIDER and DrugBank LODD datasets. SPARQL is a superset of the Structured
Query Language (SQL) used in relational database management systems and is also the standard
query language for the semantic web.

We interrogated the endpoints with the SPARQL query below, which generated a merged graph of
drug-to-side effect and drug-to-target interactions. The core of the query rests inside the WHERE
clause which provides several graph patterns to match against the data graphs of the LODD
datasets. More importantly, the key graph pattern involves the owl:sameAs predicate (line 16)
which provided the critical semantic link that matched the drug entities from the SIDER and
DrugBank data graphs.

1 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
2 PREFIX s i d e r : <http ://www4. wiwiss . fu−b e r l i n . de/ s i d e r / r e s ou r c e / s i d e r/>
3 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
4 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
5 SELECT ∗
6 FROM <http :// semanticweb . i c s . uc i . edu/LODD/SIDER#>
7 FROM <http :// semanticweb . i c s . uc i . edu/LODD/DrugBank#>
8 WHERE {
9 ?drug a s i d e r : drugs ;

10 s i d e r : drugName ?drugname ;
11 s i d e r : s iderDrugId ? drugId ;
12 s i d e r : s i d eE f f e c t ? s i d eE f f e c t .
13 ? s i d eE f f e c t r d f s : l a b e l ? s i d eE f f e c tLab e l ;
14 s i d e r : s i d eE f f e c t I d ? s i d eE f f e c t I d .
15 ?ddDrug rd f : type drugbank : drugs ;
16 owl : sameAs ?drug .
17 OPTIONAL { ?ddDrug drugbank : t a r g e t ? t a r g e t }
18 }
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We subsequently transformed the resulting graph into two feature sets for subsequent similarity
analyses. One feature set contained a vector of side effects per drug. Another contained a vector
of targets per drug. Thus, for our analysis two similarity matrices were generated for each feature
set.

Analysis

We calculated the pair-wise drug-drug side effect similarity using the Jaccard similarity met-
ric,

J(A,B) =
|A ∩B|
|A ∪B|

(1)

which computes the ratio of the intersection of side effects to the union of side effects. We also
calculated the same similarity matrix for drug target similarity. We performed a chi-square test to
determine the correlation between side effect similarity and shared target(s). We created several
contingency tables by varying the Jaccard side effect similarity score (from 0.1 to 1.0) in order to
determine the most significant side effect similarity score.

Results

Figure 5 illustrates that the majority of the SIDER-annotated drugs share very few side effects.

As shown on figures 6 and 7, we were able to capture the intuitive relationship between drugs and
their shared targets based on their shared side effects. With the chi-square test, we validated the
significance of this relationship at a Jaccard side effect similarity score of 0.5 (p-value = 5.797201e-
209, degrees of freedom = 1, chi-square statistic = 951). Further, Table 1 shows the grouping we
captured for similar classes of drugs: antihistamines and barbiturates. Thus, we have established
that side effect similarity is a significant predictor of drugs sharing the same targets.

Drug 1 Drug 2 Side effect similarity score

Carbinoxamine Diphenhydramine 0.90

Chlorthalidone hydroflumethiazide 0.90

Carbinoxamine Dexchlorpheniramine Maleate 0.87

Carbinoxamine Clemastine 0.86

Dexchlorpheniramine Maleate Diphenhydramine 0.82

Clemastine Diphenhydramine 0.80

Pentobarbital secobarbital 0.86

Table 1: A list of drugs that have high similarity score and are annotated to share the same targets.

We have further validated our hypothesis, as shown on Table 2, by capturing the grouping of drugs
with similar side effects but unannotated targets. These drugs have actually been annotated as
being in the same class of drugs according to DrugBank drug categories.
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Figure 5: Distribution of Jaccard similarity score for side effects.

Discussion and Conclusions

Although our proof-of-concept validated side effect similarity as an indicator for drugs sharing the
same target, because of the limitations of our datasets, we were unable to capture a more intriguing
relationship: discovering shared targets between drugs from different drug categories. As tables 1
and 2 illustrate, we have only captured the grouping of drugs within a similar class. In fact (data
not shown), even using the drug category similarity (as defined by DrugBank) rendered similar
results. Perhaps we needed a more discriminant set of drug classification (e.g., NDFRT[22])as well
as an updated RDF version of the SIDER database in order uncover yet known drug targets.

Challenges

As the abstract alluded to, there are still caveats to using semantic web technologies and resources.
With respect to the ease of integration, utilizing off-the-shelf datasets from the semantic web does
present an attractive alternative to traditional integration of heterogenous datasets. However, se-
mantic web technologies and standards are still evolving – from the underlying triple store and
the graph representation, to the domain-specific ontologies and the SPARQL graph query lan-
guage. Also, the lack of a standardized ontology among Bio2RDF, Chem2Bio2RDF, and LODD
still presents a hurdle to the wide adoption in the health sciences.
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Figure 6: Distribution of -log(p-value) from a chi-
square test of independence for pair-wise drug-
drug side effect similarity and shared targets.

Figure 7: Distribution of p-values from a chi-
square test of independence for pair-wise drug-
drug side effect similarity and shared targets.

Drug 1 Drug 2 Side effect similarity score

Bendroflumethiazide Chlorthalidone 0.67

Risperidone Citalopram Hydrobromide 0.54

propantheline Orphenadrine Citrate 0.54

Fluvoxamine Maleate Gabapentin 0.52

Citalopram Hydrobromide Topiramate 0.52

Risperidone Topiramate 0.51

Citalopram Hydrobromide Ropinirole Hydrochloride 0.51

Table 2: A list of drugs that have significant side effect similarity score but are annotated not to
share the same targets.

Furthermore, gaps still exists between the motivations of original data providers and the goals of
data curators. As such, as consumers of semantic web data, we are still at the mercy of this evolving
technology. Moreover, as we have experienced, the currency of the data still precludes the promise of
a systematized approach in the automated mining and inference of interesting relationships among
the molecular players and processes underlying diseases.

My experience and future work

Although still evolving, semantic web technologies present an exciting frontier in which to integrate
existing projects and resources. In particular, participation with an international community such
as the BioRDF and LODD task forces have not only broadened my approach in computer-aided
drug discovery and repositioning, but have also introduced several useful resources at the National
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Library of Medicine.
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